東大1S1数理科学基礎:微分積分
試験のみでの評価らしい、出席は特に取らないらしい
試験
イプシロンデルタの話とかはほとんどでない
メインが計算問題
Chapter 11.
\frac{\partial f}{\partial x}を、f_xと書くこともあるらしい
え、ダッシュとかつけないんだ

紛らわしいですよね

f_{xx},f_{xy},f_{yx},f_{yy}
まあそうね、という気持ち

勾配ベクトルは、
(f_x(x,y), f_y(x,y))^Tという感じ
これは、つまり接平面で一番急勾配な方向を表す
f_x=f_y=0の点
つまり全微分しても0
Chapter 10.
f(x,y)みたいなやつ
ℝ^2\to ℝの写像とも言える
こういう関数ならこう言う3Dグラフ形状、というパターンが色々
f(x,y)=ax+by+cは平面
これは、平面をベクトルで定義したやつ(高校)でいける
f(x,y)=g(\sqrt{x^2+y^2})は回転面
回転面は壺みたいなイメージ、何かのグラフを回転して作れる立体
gには原点から(x,y)への距離が突っ込まれている
からので、原点から同じ距離の座標なら同じ出力
f(x,y)=g(x)は、柱面
これはまあ想像しやすいな
まあそりゃそうって感じの形状

ヒント書こうと思ったけど、もろ答えになるからやめておく

f(x,y)=px^2+qxy+ry^2を考える
これを平方完成すると、k(x+y)^2+ly^2みたいな形になる
ここで、X=x+y, Y=yの新しい座標系を考えれば、kX^2+lY^2という形式でまとめられる
なるほど〜

線形代数を学ぶともっと複雑な式も↑の形式にまとめられると言っていた
座標系を変えてるので歪んだ形ではあるけど
グラフの形状把握の方法(微分を使わない時)
x,y軸に垂直な平面でグラフの断面を切り取る
x = x_0 + t \cos θ_0, y = y_0 + t\sin θ_0, z = f(x_0 + t \cos θ_0, y_0 + t\sin θ_0)の曲線が断面として得られる
zが定数の時のxとyの関係を得れば良い
グラフの正負を得て描く
Chapter 6.
Chapter 5.
高校までの範囲
(厳密には関数が全単射になるように定義しないと逆関数にはならない)
単調にもいろいろあるんだな

\forall x\in A\forall a<x;f(a)<f(x)くらいしか知らない(これは狭義単調増加の場合)
その不等号が等号を含むと問題が起きる

右だとf(a)とf(b)がイコールだから逆写像を作る時にaにしたらいいのかbにしたらいいのかわからなくなる
なんだ。等号の有無だけだった
もちろん大事な違い
なるほど

「狭義」って相対的な表現だし、名前だけ見ても意味がわからない
てっきり一様連続みたくいろんな種類があるのかと思った
実数の場合は定義域が決まっているから大丈夫

\exp:\R\to\R_+
\ln:\R_+\to\R
補足:\R_+:=\{x\in\R|x>0\}
これなら
定義域の範囲で狭義単調関数、という事か

複素数に拡張するとアウト
なつかしい

三角関数 <-> 逆三角関数(arcsinとか)
こっちも同様の理由で定義域を制限する
なのでarcsinとかは定義域限られる、という話
これはIBで既習

微分の計算も、公式は導出できる
y=arcsinxの時にsiny=xなので、dx/dyを求めてからひっくり返していじくり回す
Lec 4.
中間値の定理
\exists c \; \frac{f(b) − f(a)}{(b − a)} = f'(c), a < c < b
aからbへの線の一次関数を考えたときに、それと一致するf'(c)の値(cにおける傾き)を傾きとする一次関数がある、と言っている
これは分数にしないほうが便利

f(b)=f'(c)(b-a)+f(a)\quad\text{.for}\exist c\in (a,b)
そしてこの形にすることで……?
定理4: f(x)の逆関数g(y)があるとき、g'(y)=\frac{1}{f'(g(y))}と導関数が得られる
これはそれなりに非自明かつ便利だな

条件: f(x)が開区間Iで単調増加かつ微分可能、かつf'(x)≠0
なぜこの条件が必要なのか理解したい❓
自習する

❓
感想
最近、結構自明な定理を色々習っているが、これらをどこまで理解すべき?

定理の条件を知っていれば良いのか、証明を一度理解すれば良いのか、いつでも証明を思い出せるべきなのか、0から証明できる能力を持つべきなのか
定理の条件を知っていれば良いのか
試験直前に詰め込む系のことをするなら必要
それ以外は正直必要ない
定理の条件があやふやになってしまっても、その場で証明書いたり、
文字定数の具体化をしてあっているか確かめればいいだけ
もちろん試験中に全ての定理に対してこれをやると時間がなくなるので、事前の問題演習で、忘れるたびにその場で証明書くのを繰り返す感じだろうか
忘れるたびに何度も書けば、結果的に覚えることになる
まあまずはここまでほしい
証明を一度理解すれば良いのか
これがあると暗記に頼ることがなくなる
いつでも証明を思い出せるべきなのか
簡単な例だと三角関数の諸定理がそう
(\sin\theta)^2=?と忘れてしまっても、どう展開するのかさえ知っていれば、その場で復元できる
さらに証明に使った手法を応用していろんな問題を解くことがよくある
0から証明できる能力を持つべきなのか
「0から」の意味がちょっと不明瞭かな

「証明の方針を忘れてしまっても証明できる」というのなら、それはすでに証明に対する理解を失っている
より正確に書くと、
証明を知る過程で、これらの証明を自分で0から見つけ出せる普遍的数学スキル(?)を身につけるべきなのかという意図だった

でもそれは流石に求められていない気がする

あっそれは天才か狂人か神にしかできないので大丈夫です

ただ、証明をいじったり別ルートからのアプローチを考えたりするのは(余裕があれば)取り組むとよさそう
これである程度は0から手法を見つけ出せる
Lec 3.
Lec 2.
Lec 1.
変数についての主張
どの値についても成立するとか、ある値について成立するとか
タイプ:
\forall x \; Q(x)
\exists x \; Q(x)
名前は分かりやすいな

命題の否定
\forall x Q(x)の否定は、\exists x \lnot Q(x)
\exists x Q(x)の否定は、\forall x \lnot Q(x)
原理は同じです

なるほど


具体例
部分集合は、ちゃんと定義するなら
x \in X \implies y \in Y あ〜、たしかに


集合の言語が
論理式に変換されている


数学ガールで見た時は理解できなかったけど、今改めて見たら腑に落ちた
P \implies Qが、\lnot P \lor Qというやつ
Qが真の時 or Pが偽の時に「PならばQ」は真、わかる
ならば なら \forall x_1 \forall x_2 \;\; x_1 \ne x_2 \implies f(x_1) \ne f(x_2)
論理式 なら\forall x_1 \forall x_2 \;\; x_1 = x_2 \lor f(x_1) \ne f(x_2)
ならばだとx1≠x2だったのがx1=x2になっているのが大事


なるほど〜、これは慣れるのに時間かかりそう
「ならば」は論理記号とは別のものとして扱っている?

論理学だとならば\impliesは\landや\lorと同じく論理記号のひとつなので、この対比に違和感があった
あー、確かに

and,or,notだけで表現することを指して論理記号って言ってました
\forall a, bと\forall a \forall bは同じ意味
いちいち
\forall書くのめんどいですからね

あ~そっちかー

それも大事ですね
自明ですが\forall a,b; P(a,b)\iff \forall a\forall b;P(a,b)を手計算で証明してみるとよさそう
数学は疑問に思ったことを自力で試せて理解できるのが最高


この辺すぐ実行して結果を見れるprogrammingと共通している
forallとexistsが混ざる場合はチェーンできない?
\forall a,b\in\Z\exists! q,r\ge0;a=qb+r\land0\le r<bみたいなことはできます

順番を逆にすることはできない

そこは実際に試してみるとよさそう

\forall a\exists b; P(a,b)\iff\exists a\forall; b P(a,b)は成立するか?とか
\forallもしくは
\existsのどちらかが連鎖している場合は順序を変えても問題ないが、
\forallと
\existsの並び替えはできない、という感じか

\forall a \forall b \exists c \exists dを\forall b \forall a \exists d \exists cには出来る
が、\forall a \forall b \exists c \exists dを\forall a \exists c \forall b \exists dはできない
更に発展させると、
\forall a\exists b; P(a,b)\impliedby\exists a\forall; b P(a,b)なら成り立つのか?みたいな疑問・問題も作れる

こんな風にいろんなvariationを作って深掘りできるそして時間を溶かす
bが集合Aの上界とは、
\forall x \in A \; x ≦ b、日本語なら 全てのAの要素よりbの方が大きい
定義で<ではなく≦なのが大事

要は[].max(), [].min()
[0, 1)には最大元は存在しない
なぜなら1はこの集合の元ではないので
\lim_{x\to1}xが最大元とは言えないの?と思った

値とは別の「極限」という概念
なので最大元とは言えない、という感じかな
極限は関係ありません

単に最大元の定義にあわないだけです
a\text{は}A\text{の最大元}:\iff a\in A\land\forall x\in A;x\le a
最大元とは違う定義
上界の要素の集合の中の最小元
ここで、1は[0, 1]の上界なのが大事
上界bは 任意の要素aに対してa≦bと定義されている、a<bではないのが大事
[0, 1)の最大元は1ではないが、上限は1
というかこういう時のために定義した上限
集合Aの上限は\sup A、下限は\inf A
この辺りは資料見た方がちゃんと定義書いてあるのでわかりやすいな
まあ要は、[0, 1)みたいな集合で一番上が1じゃんと言うための道具
1自体は集合に含まれていないので、最大元が1とは言えない
実数は連続性を持つ
これを正確に表現する方法として、
> 実数集合の部分集合は、上に有界ならば上限を持つ
連続性を持たなかったらなら、上に有界な部分集合がある時に、部分集合の上界に最小元が存在しない、と
それなら上に有界ではないのでは
いや、違うか

これだと対偶がちゃんと取れていない
でも、「上に有界な部分集合がある時に、部分集合の上界に最小元が存在する」のはやっぱり当然では
違うか、上界に元があっても最小元が存在するとは限らないのか
Ex: (0, ∞]に元はあっても最小元はない
エッジケースだと
\varnothingがそう

確かに

これが成り立つことが実数であることそのものなので、任意の
半順序集合では成立しません

[0,\sqrt2]\cap\Bbb{Q}の上界は\{x\in\Bbb{Q}|\forall y\in [0,\sqrt2]\cap\Bbb{Q};y\le x\}(=[\sqrt2,\infin)\cap\Bbb{Q})だが、[\sqrt2,\infin)\cap\Bbb{Q}に最小元は存在しない
局所的な最大/最小
二階微分で定義されるイメージだったけど、|x − x_0 | < δ ならば f(x) ≤ f(x_0) となるの方が確かに良い定義だな
平べったい部分は局所的に最大かつ最小になる(≤で定義されてるので)
理解

局所的に最大の定義を少しいじれば極大になるのね
