generated at
双線型空間の普遍性

双線型空間の普遍性
\forall K\in{\cal B}\forall U,V\in{\cal L}(K)に対し、T\in{\cal L}(K)と「普遍的な双線型写像b:\underline U\times\underline V\to\underline Tが存在する
bが普遍的であることは、以下と同値である
\forall W\in{\cal L}(K)\forall f:\underline U\times\underline V\to\underline W\exists!\bar f:\underline T\to\underline W.f=\bar f\circ b\land\bar f\text{は線型写像である}
bにより、\underline U\times\underline V\to\underline Wから\underline T\to\underline Wへの一対一対応を構成できる
記法は線型空間の略記を参照
fを双線型写像に絞ると、bがtensor積になるtakker
\forall K\in{\cal B}\forall U,V\in{\cal L}(K)\forall b:\underline U\times\underline V\to\underline T\forall b':\underline U\times\underline V\to\underline T'.b,b'\text{が普遍性を満たす}\implies T\cong T'
ここで
T\cong T':\iff\exist\phi:T\to T'.\phi\text{は同型写像である}
同型写像は集合論の場合全単射と同一だと思っていい
証明
\forall K\in{\cal B}\forall U,V\in{\cal L}(K)\forall b:\underline U\times\underline V\to\underline T\forall b':\underline U\times\underline V\to\underline T'にて
b,b'\text{が普遍性を満たす}
\iff\forall W\in{\cal L}(K).
\implies
左図式のWT'を、右図式のWTを代入した
あとで使うのでbの普遍性は残してある
\iff\forall W\in{\cal L}(K)\exists! \bar f,\bar f'\text{ are linear}.
図式を合体しただけ
記号がかぶらないよう、右図式の\bar f\bar f''に変えた
\implies
左図式の上矢印を合成し、真ん中のb'を削った
右に恒等写像{\rm id}_T:T\to Tの図式を加えた
これは恒等式なので常に成り立つ
\implies\exists! \bar f,\bar f'\text{ are linear}.\bar f'\circ\bar f={\rm id}_T
ここが証明の核心
真ん中の図式即ちbの普遍性が示す一意性より、左図式の点線上の写像\bar f'\circ fと右図式の点線上の写像{\rm id}_Tが等しくなる
\implies \exist f:T\to T'.f\text{は同型写像である}
さっきも書いたが、同型写像は全単射と等しいはず
\iff T\cong T'
\underline{\therefore\forall K\in{\cal B}\forall U,V\in{\cal L}(K)\forall b:\underline U\times\underline V\to\underline T\forall b':\underline U\times\underline V\to\underline T'.b,b'\text{が普遍性を満たす}\implies T\cong T'\quad}_\blacksquare

この定理から、どのようにテンソル積を定義しても、実質同じだとわかる
テンソル積を、基底を使わずに定義できたということ
数カ月ぶりにこのページに書き込んだが、当時はこの定理の意味を全然わかってなかったのだと思う
わかってなかったということがわかるのも成長か

eg0.6.tikz(tex)
\begin{document} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T$}; \node (W) at (0,2) {$\underbar W$}; \draw (S) -- node {$b$} (V); \draw (S) -- node[swap] {$\forall f$} (W); \draw[dashed] (V) -- node {$\exists! \bar{f}\textrm{ is linear}$} (W); \end{tikzpicture} \end{document}

lemma0.7.tikz(tex)
\begin{document} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T$}; \node (W) at (0,2) {$\underbar W$}; \draw (S) -- node {$b$} (V); \draw (S) -- node[swap] {$\forall f$} (W); \draw[dashed] (V) -- node {$\exists! \bar{f}\textrm{ is linear}$} (W); \end{tikzpicture} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T'$}; \node (W) at (0,2) {$\underbar W$}; \draw (S) -- node {$b'$} (V); \draw (S) -- node[swap] {$\forall f$} (W); \draw[dashed] (V) -- node {$\exists! \bar{f}\textrm{ is linear}$} (W); \end{tikzpicture} \end{document}

lemma0.7-2.tikz(tex)
\begin{document} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T$}; \node (W) at (0,2) {$\underbar T'$}; \draw (S) -- node {$b$} (V); \draw (S) -- node[swap] {$b'$} (W); \draw[dashed] (V) -- node {$\exists! \bar{f}\textrm{ is linear}$} (W); \end{tikzpicture} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T'$}; \node (W) at (0,2) {$\underbar T$}; \draw (S) -- node {$b'$} (V); \draw (S) -- node[swap] {$b$} (W); \draw[dashed] (V) -- node {$\exists! \bar{f}\textrm{ is linear}$} (W); \end{tikzpicture} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T$}; \node (W) at (0,2) {$\underbar W$}; \draw (S) -- node {$b$} (V); \draw (S) -- node[swap] {$\forall f$} (W); \draw[dashed] (V) -- node {$\exists! \bar{f}\textrm{ is linear}$} (W); \end{tikzpicture} \(\textrm{.for }\forall W\in{\cal L}(K)\) \end{document}

lemma0.7-3.tikz(tex)
\begin{document} \begin{tikzpicture}[auto,->] \node (UV) at (2,0) {$\underbar U\times\underbar V$}; \node (T) at (0,-2) {$\underbar T$}; \node (T') at (0,0) {$\underbar T'$}; \node (T2) at (0,2) {$\underbar T$}; \draw (UV) -- node {$b$} (T); \draw (UV) -- node[swap] {$b$} (T2); \draw (UV) -- node[swap] {$b'$} (T'); \draw[dashed] (T) -- node {$\bar f$} (T'); \draw[dashed] (T') -- node {$\bar f'$} (T2); \end{tikzpicture} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T$}; \node (W) at (0,2) {$\underbar W$}; \draw (S) -- node {$b$} (V); \draw (S) -- node[swap] {$\forall f$} (W); \draw[dashed] (V) -- node {$\exists! \bar f''\textrm{ is linear}$} (W); \end{tikzpicture} \end{document}

lemma0.7-4.tikz(tex)
\begin{document} \begin{tikzpicture}[auto,->] \node (UV) at (2,0) {$\underbar U\times\underbar V$}; \node (T) at (0,0) {$\underbar T$}; \node (T2) at (0,2) {$\underbar T$}; \draw (UV) -- node {$b$} (T); \draw (UV) -- node[swap] {$b$} (T2); \draw[dashed] (T) -- node {$\bar f'\circ\bar f$} (T2); \end{tikzpicture} \begin{tikzpicture}[auto,->] \node (S) at (2,0) {$\underbar U\times\underbar V$}; \node (V) at (0,0) {$\underbar T$}; \node (W) at (0,2) {$\underbar W$}; \draw (S) -- node {$b$} (V); \draw (S) -- node[swap] {$\forall f$} (W); \draw[dashed] (V) -- node {$\exists! \bar f''\textrm{ is linear}$} (W); \end{tikzpicture} \begin{tikzpicture}[auto,->] \node (UV) at (2,0) {$\underbar U\times\underbar V$}; \node (T) at (0,0) {$\underbar T$}; \node (T2) at (0,2) {$\underbar T$}; \draw (UV) -- node {$b$} (T); \draw (UV) -- node[swap] {$b$} (T2); \draw[dashed] (T) -- node {${\rm id}_T$} (T2); \end{tikzpicture} \end{document}