generated at
例0.9 位相空間の普遍性

2つの開集合U,V被覆された位相空間X:=(U\cup V,{\cal O})を考える
eg0.9.tikz(tex)
\usetikzlibrary {arrows.meta} \begin{document} \begin{tikzpicture}[auto,arrows={Hooks[left]->}] \node (UV) at (2,0) {$U\cap V$}; \node (V) at (0,0) {$V$}; \node (U) at (2,2) {$U$}; \node (X) at (0,2) {$\underbar X$}; \draw (UV) -- node {$j$} (V); \draw (UV) -- node[swap] {$i$} (U); \draw (U) -- node {$j'$} (X); \draw (V) -- node {$i'$} (X); \end{tikzpicture} \end{document}
これは位相空間連続写像の世界で次の普遍性を持つ
eg0.9-2.tikz(tex)
\usetikzlibrary {arrows.meta} \begin{document} \begin{tikzpicture}[auto] \tikzset{hook/.style={arrows={Hooks[left]->}}} \node (UV) at (2,0) {$U\cap V$}; \node (V) at (0,0) {$V$}; \node (U) at (2,2) {$U$}; \node (X) at (0,2) {$\underbar X$}; \node (Y) at (-2,4) {$\forall Y$}; \draw[hook] (UV) -- node {$j$} (V); \draw[hook] (UV) -- node[swap] {$i$} (U); \draw[hook] (U) -- node {$j'$} (X); \draw[hook] (V) -- node {$i'$} (X); \draw[dashed] (X) -- node[anchor=center] {$\exists!h$} (Y); \draw (U) to[bend right] node {$\forall f$} (Y); \draw (V) to[bend left] node {$\forall g$} (Y); \end{tikzpicture} \end{document}
>都合のよい条件下においては、誘導された基本群の間の図式
eg0.9-3.tikz(tex)
\begin{document} \begin{tikzpicture}[auto,->] \node (UV) at (2,0) {$\pi_1(U\cap V)$}; \node (V) at (0,0) {$\pi_1(V)$}; \node (U) at (2,2) {$\pi_1(U)$}; \node (X) at (0,2) {$\pi_1(\underbar X)$}; \draw (UV) -- node {$j_*$} (V); \draw (UV) -- node[swap] {$i_*$} (U); \draw (U) -- node {$j'_*$} (X); \draw (V) -- node {$i'_*$} (X); \end{tikzpicture} \end{document}
>も、群と群準同型の世界で同じ普遍性をもつ。これがvan Kampenの定理である
この例は特に説明がないのでパス
基本群群準同型も知らないので証明しようがないtakker