累積分布関数
cumulative distribution function, CDF
確率分布において、ある特定の値以下である確率を表す関数
F(x)の値域は [0,1]
xが負の無限大に近づくとF(x) = 0になる
xが正の無限大に近づくとF(x) = 1になる
特定の範囲に入る確率を求められる
例えば、Xがaからbの間にある確率は以下で求められる
P(a \leq X \leq b) = F(b) - F(a)
定義
確率変数Xの累積分布関数F(x)は以下のように定義できる
離散型確率変数の場合
F(x) = P(X \leq x) = \sum_{k \leq x} P(X = k)
P(X = k) はXがkの値を取る確率
連続型確率変数の場合
F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t) \, dt
つまり、累積分布関数は、確率密度関数を積分した結果である