generated at
VC PROCESSING!!!! EXCEPTION!!! "slow_conv2d_cpu"

対応:v.1.5.1.15aにダウングレードしたらうごいた

zsh
VC PROCESSING!!!! EXCEPTION!!! "slow_conv2d_cpu" not implemented for 'Half' Traceback (most recent call last): File "voice_changer\VoiceChanger.py", line 197, in on_request File "voice_changer\RVC\RVC.py", line 277, in inference File "voice_changer\RVC\RVC.py", line 267, in _pyTorch_inference File "voice_changer\RVC\custom_vc_infer_pipeline.py", line 149, in pipeline File "voice_changer\RVC\custom_vc_infer_pipeline.py", line 86, in vc File "fairseq\models\hubert\hubert.py", line 535, in extract_features res = self.forward( File "fairseq\models\hubert\hubert.py", line 437, in forward features = self.forward_features(source) File "fairseq\models\hubert\hubert.py", line 392, in forward_features features = self.feature_extractor(source) File "torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "fairseq\models\wav2vec\wav2vec2.py", line 895, in forward x = conv(x) File "torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "torch\nn\modules\container.py", line 204, in forward input = module(input) File "torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "torch\nn\modules\conv.py", line 313, in forward return self._conv_forward(input, self.weight, self.bias) File "torch\nn\modules\conv.py", line 309, in _conv_forward return F.conv1d(input, weight, bias, self.stride, RuntimeError: "slow_conv2d_cpu" not implemented for 'Half'

基素"slow_conv2d_cpu" not implemented for 'Half'
ChatGPT
The error message "slow_conv2d_cpu" not implemented for 'Half' usually occurs when you try to perform convolutional operations on half-precision floating-point numbers (float16 or "Half" in PyTorch) using a CPU...
To solve this issue, you can try either of the following solutions:
Convert your inputs to a higher-precision floating-point format (e.g., float32) before performing the convolution operation.
Use a GPU for your computations instead of a CPU. GPUs are optimized for matrix operations and can handle half-precision floating-point numbers much more efficiently than CPUs.

>v.1.5.1.15b
>
> RVC(Retrieval-based-Voice-Conversion)の軽量化を行いました。精度や応答速度をわずかに落とすことでより低スペックな PC での稼働も可能になりました。

v.1.5.1.15aにしたらうごいた