generated at
群論

群はざっくり:集合に乗算のような演算を定義したもの

1 イントロダクション
目標:準同型定理(学部の群論のゴールに設定されることが多い)を理解する
準同型定理は表現論ガロア理論と関連する
ガロア理論を結びつける
群・環・体と演算のルールが増えていく
群の演算は1つ、環・体は2つ
線形代数学の線型空間は群論の発展形なので難しい
集合(元)と演算に対して、ある性質を満たす
どんな構造を持っているかだけに興味があるので、記号はなんでもいい
群表が同じになると同型という
実際には便宜上馴染み深い行列で考える(群が出たら行列で考える)
群になる行列は正則行列である必要がある
演算は積で考える
これらを一般線型群という
なんらかの群を一般線型群に置き換えることを準同型写像という
n:1
対称性:ある変換に対して不変なこと
変換はふつう、群をなすので、群論に関係
対称性が使われているもの:結晶構造波動関数の分類
並進対称性・時間反転対称性


2
Def.
\varnothingでない集合Gに対して二項演算\circ
G \times G \to G
GとGの直積集合からGへの写像
演算について閉じている(結果は同じGの中にある)
(a, b) \mapsto a \circ b
直積集合の要素の順序対がaとbの演算結果になる
が与えられていて
基素 演算を抽象的に扱う。○を具体化すると積だったり和だったりする
次の条件を満たす
任意のa,b,c \in Gに対して
(a \circ b)\circ c = a \circ (b \circ c)
どこから計算してもいい
2. 単位元の存在
e \in Gが存在し、任意のa \in Gに対して
a \circ e = e \circ a = a
を満たす
3. 逆元の存在
任意のa \in Gに対して
a \circ b = b \circ a = e
を満たすb \in Gが存在する

どんな集合が群になる?
群の条件を満たすか
集合, 演算閉じている結合法則単位元逆元備考
R, +ooo(0)o(a-a=0)
Z, +ooo(0)o(a-a=0)
R,・ooo(1)0に逆元がない
R^*(0を除いたR),・ooo(1)o
T={z \in C | |z| = 1} , ・ooo(1)oオイラーの公式で考える
G={1}, ・ooo(1)oこういうつまらないのを自明群という
G={i, -1, -i, 1}, ・ooo(1)o
ハマりがちなミス
逆元は共通でなくて良い
集合と演算の両方がないと、群を考えることができない
R上のn次正則行列全体は行列の積に対して群になる
\rm{GL_n}(\R)と書く
General linear group
閉じている 正則行列の積は正則行列
結合法則 満たす
単位元 単位行列(正則行列)
逆元 逆行列(正則行列なので、ある)

便利な用語の導入
任意のa, b \in Gに対して a \circ b = b \circ aを満たすとき、aを可換群という
\rm{GL_n}(\R)は非可換群
群Gの元の個数をGの位数といい、|G|で表す
位数が有限なものを有限群という。無限のものは無限群
以降、a \circ babという
乗法の結果じゃなくても「」というので誤解ポイント
abはa+bかも知れないということ

Thm
1 群Gに対し、単位元はただ1つ存在する
2 任意のa \in Gに対し、逆元はただ1つ存在する
逆元はa^{-1}と書く
結構絞ったことしか言っていないのに、これが成立する
Proof.
1 単位元が2つあったとする e, e'
単位元の定義から次を満たす
\begin{cases} ee'=e' \\ ee'=e \end{cases}
\therefore e=e'
2 aの逆元が2つあったとする b, b'
結合法則の定義より
b=(\underbrace{b'a}_{\text{e}})b=b'(\underbrace{ab}_{\text{e}})=b'

(a^{-1})^{-1}=a
proof. aa^{-1}=a^{-1}a=eでaをa^{-1}の逆元と見る
(ab)^{-1}=b^{-1}a^{-1}
proof
\begin{aligned} {b^{-1}a^{-1}}ab &= b^{-1}(a^{-1}a)b \\ &=b'b \\ &=e \end{aligned}
\begin{aligned} ab(b^{-1}a^{-1}) &= a(bb^{-1})a^{-1} \\ &=aa^{-1} \\ &=e \end{aligned}
abに対する逆元なので
\therefore b^{-1}a^{-1} = (ab)^{-1}