generated at
圏:junked
from
junked
signature
category.sig
sig Category fixed-in CLASS % Data %0-morph Obj %1-morph Hom : Obj × Obj -> Set %2-morph "identity element" @ id : i => Δ * hom : I -> Set "composition morphism" @ comp : Ob^ × Δ × Ob^ ; hom ⊗ hom => Ob^ × ! × Ob^ ; hom : Ob × Ob × Ob -> V Axioms %3-eq "associative" comp ⊗ hom^; comp =(hom×hom×hom)α; hom^ ⊗ comp; comp : Ob^ × Δ × Δ × Ob^; (hom⊗hom)⊗hom => Ob^ × ! × ! × Ob^ ; hom : Ob × Ob × Ob × Ob -> V %3-eq "left unital"

考察中
真理値実例Ω
\left\lang\mathrm{ Heyting\ alg. }\colon |Ω|; ∧, ∨, ⊥, ⊤, ⊃ \right\rang
より一般の真理値としてはHeyting代数くらいを想定しておけばいいのかな
X上の述語
\operatorname{Pred}(X) = [X,|Ω|]
\operatorname{Pred}\colon \mathbf{Set}^\mathrm{op} → \mathbf{HeytingAlg}
\mathrm{Pow}^\circ\colon \mathbf{Set}^{\mathrm{op}}→\mathbf{Set}
Δ_{a}\colon [a^\mathrm{op}×a ,b] → \operatorname{Pred}(b)