generated at
右普遍射
definition \left\lang dR, dε \right\rangが函手L \colon C \to Dから対象d \colon Dへの(右)普遍射
\iff \left\lang\textrm{R-univ}\colon C, D; L, d, dR; d\varepsilon \right\rang
where
dR\colon C
dε\colon dR.L → d
Axiom
\forall c, f\colon c.L→ d
\exist ! g \colon c→dR, \
(g.L);d\varepsilon = f
equal
コンマ圏L↓d^♯終対象と同一視できる
\left\lang\textrm{R-univ}\colon C, D; L, d, dR; d\varepsilon \right\rang
\iff \left\lang dR, *; d\varepsilon \right\rang \cong \operatorname{term} (L↓d^♯)
このとき、終対象への射が普遍性を担う
!=\left\lang g, *^\wedge \right\rang \colon \left\lang c, *; f \right\rang → \left\lang dR, *; d\varepsilon \right\rang
signature
R-Univ.sig
2-signature <R-Univ: C, D; L, d, dR; dε> in CAT Data 0-morph C 0-morph D 1-morph L : C -> D 1-morph d : %I -> D 1-morph dR : %I -> C 2-morph dε : dR * L => d : %I -> D Axioms 3-formula ∀ c : %I -> C ∀ f : c * L => d ∃! f' : c => dR (f' * L) ; dε = f