右普遍射
\left\lang dR, dε \right\rangが函手
L \colon C \to Dから対象
d \colon Dへの(右)
普遍射\iff \left\lang\textrm{R-univ}\colon C, D; L, d, dR; d\varepsilon \right\rang
where
dR\colon C
dε\colon dR.L → d
Axiom
\forall c, f\colon c.L→ d
\exist ! g \colon c→dR, \
(g.L);d\varepsilon = f
\left\lang\textrm{R-univ}\colon C, D; L, d, dR; d\varepsilon \right\rang
\iff \left\lang dR, *; d\varepsilon \right\rang \cong \operatorname{term} (L↓d^♯)
このとき、終対象への射が普遍性を担う
!=\left\lang g, *^\wedge \right\rang \colon \left\lang c, *; f \right\rang → \left\lang dR, *; d\varepsilon \right\rang
R-Univ.sig 2-signature <R-Univ: C, D; L, d, dR; dε> in CAT
Data
0-morph C
0-morph D
1-morph L : C -> D
1-morph d : %I -> D
1-morph dR : %I -> C
2-morph dε
: dR * L => d
: %I -> D
Axioms
3-formula
∀ c : %I -> C
∀ f : c * L => d
∃! f' : c => dR
(f' * L) ; dε = f